Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

3-Cyano-3-methyl-5-phenylcyclohexanone

M. Subramanyam,^a
A. Thiruvalluvar,^{a*}
R. T. Sabapathy Mohan^b and
S. Kamatchi^b

^aDepartment of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, and ^bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India

Correspondence e-mail: athiru@vsnl.net

Key indicators

Single-crystal X-ray study T = 160 KMean $\sigma(\text{C-C}) = 0.002 \text{ Å}$ R factor = 0.039 wR factor = 0.095Data-to-parameter ratio = 12.0

For details of how these key indicators were automatically derived from the article, see http://iournals.iucr.org/e.

In the title molecule, $C_{14}H_{15}NO$, the cyclohexane ring adopts a chair conformation. The cyano group and the methyl group have axial and equatorial orientations, respectively. The phenyl ring has an equatorial orientation.

Received 19 March 2007 Accepted 23 March 2007

Comment

The present X-ray diffraction study of the title compound, (I), was undertaken to determine how the conformation of the system is affected by the substitution of cyano and methyl groups at position 3 and a phenyl ring at position 5 of the cyclohexanone.

The molecular structure of (I) is shown in Fig. 1. The cyclohexane ring adopts a chair conformation. The cyano group and the methyl group at position 3 have axial and equatorial orientations, respectively. The phenyl ring at position 5 has an equatorial orientation. The mean plane of atoms C2/C3/C5/C6 and the phenyl ring make a dihedral angle of $83.8 (1)^{\circ}$.

Experimental

A mixture of 3-methyl-5-phenylcyclohex-2-enone (3.72 g, 0.02 mol), potassium cyanide (2.6 g, 0.04 mol), ammonium chloride (1.59 g, 0.03 mol), dimethylformamide (50 ml) and water (2 ml) was heated with stirring for 16–18 h at 353 K. The reaction mixture was then cooled to room temperature and poured into water. The product was extracted with CH_2Cl_2 (3 × 10 ml) and the organic layer was dried, evaporated and purified by column chromatography (hexane–EtOAc, 4.5:1 v/v). The yield of the isolated product was 2.5 g (75%).

Crystal data

 $\begin{array}{lll} \text{C}_{14}\text{H}_{15}\text{NO} & V = 2287.85 \text{ (11) Å}^3 \\ M_r = 213.27 & Z = 8 \\ \text{Orthorhombic, } Aba2 & \text{Mo } K\alpha \text{ radiation} \\ a = 11.5745 \text{ (3) Å} & \mu = 0.08 \text{ mm}^{-1} \\ b = 17.5499 \text{ (5) Å} & T = 160 \text{ (1) K} \\ c = 11.2629 \text{ (3) Å} & 0.35 \times 0.33 \times 0.28 \text{ mm} \end{array}$

Data collection

Nonius KappaCCD area-detector diffractometer 1755 independent reflections 1527 reflections with $I > 2\sigma(I)$ Absorption correction: none $R_{\rm int} = 0.071$

24679 measured reflections

© 2007 International Union of Crystallography All rights reserved

organic papers

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ 1 restraint $wR(F^2) = 0.095$ H-atom parameters constrained S = 1.05 $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$

S=1.05 $\Delta \rho_{\rm max}=0.20 \ {\rm e} \ {\rm \AA}^{-3}$ 1755 reflections $\Delta \rho_{\rm min}=-0.20 \ {\rm e} \ {\rm \AA}^{-3}$ 146 parameters

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–1.00 Å and $U_{\rm iso}({\rm H})$ = 1.2 or 1.5 times $U_{\rm eq}({\rm C})$. In the absence of significant anomalous scattering, Friedel pairs were merged.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2003).

The data collection was carried out by Dr A. Linden of the Institute of Organic Chemistry at the University of Zurich; his help is gratefully acknowledged by Dr A. Thiruvalluvar.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Flack, H. D. (1983). Acta Cryst. A39, 876–881.



Figure 1
The molecular structure of (I), showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.